О применении преобразователя давления Сапфир-22-МП-ВН-ДГ для измерения расхода массы ингибитора коррозии

Т.Т. Нигаматзянов

главный метролог¹ tomas-nigmat@mail.ru

В.В. Аскерков

заместитель генерального директора по качеству omk tk@mail.ru

С.А. Анисимова

ведущий инженер

А.Н. Любягин

заместитель коммерческого директора $anatol\ tk@mail.ru$

Р.Р. Салимуллин

начальник отдела информационных технологий² salimullin@tatneft.ru

¹ ОАО «Теплоконтроль», Казань, Россия ²Инженерный центр ОАО «Татнефть», Альметьевск, Россия

В статье рассмотрено преимущество определения расхода массы ингибитора коррозии, подаваемого из резервуара дозаторной установки в нефтепромысловое оборудование, с использованием преобразователя гидростатического давления Сапфир-22МП-ВН-ДГ.

Материалы и методы

Образец реагента, изъятого из дозаторной установки Альметьевского НГДУ ОАО «Татнефть». Объемно-массовый метод по ЦТ-781, методы определения плотности по ГОСТ 3900-85.

Ключевые слова

преобразователь гидростатического давления, расход массы, ингибитор коррозии

Для защиты нефтепромыслового оборудования от коррозии в высокоминерализованных средах, содержащих сероводород, углекислоту и кислород, используется ингибитор коррозии. Например, в таких нефтяных компаниях как ОАО «Татнефть», ОАО «АНК «Башнефть», ОАО «Белкамнефть» применяется ингибитор коррозии Рекорд-6о8 (плотность при 20°С в пределах от 880 до 910 кг/м³), АМФИКОР (плотность при 20°С 810 кг/м³), ОАО «Татнефть», ОАО «Оренбургнефть», ОАО «Тюменьнефтегазнефть», ОАО «НК «Роснефть-Пурнефтегаз», ОАО «РКМ-ойл» — ингибитор коррозии СНПХ-6438 (плотность при 20°С в пределах от 880 до 950 кг/м³).

Как правило, ингибитор коррозии заливается в цилиндрический резервуар высотой 1–2 м дозаторной установки и подается в нефтепромысловое оборудование. В связи с этим возникает необходимость измерения расхода массы дорогостоящего жидкого реагента на местах использования ингибитора с высокой точностью — погрешностью всего лишь до десятков грамм.

В настоящее время расход массы определяется объемно-массовым методом [1], рассчитываемый в соответствии с инструкцией [2] по формуле:

$$\delta m \ pac. = \rho \cdot V = \rho \cdot \delta h \cdot S$$
 (1)

где ρ — плотность жидкости, кг/м³, δV — изменение объема жидкости, м³; δh — изменение высоты столба жидкости, м; S — площадь сечения резервуара, м²

Недостатки данного метода:

- зависимость плотности ρ ингибитора коррозии от температуры;
- погрешность определения плотности ингибитора;
- необходимость подвергать периодической поверке измерительную линейку или рулетку уровнемера;
- погрешность определения высоты столба жидкости;
- погрешность определения

- площади сечения;
- необходимость оператору периодически проводить измерения по определению плотности ингибитора ρ и изменению высоты столба жидкости δhyp ., а также проводить расчеты по определению расхода массы сливаемой из резервуара жидкости.

Зависимость плотности ρ ингибитора коррозии от температуры t была нами экспериментально исследована в климатической камере типа ТВУ-2000 зав. № 295096 в феврале 2012 г. на образце реагента, изъятого из дозаторной установки Альметьевского НГДУ ОАО «Татнефть». Плотность исследуемого реагента в соответствии с методическими указаниями [3] определялась по методике, основанной на ГОСТ 3900-85 [4]. Для определения воспроизводимости измерений плотность ингибитора измерялась в течение месяца в разные дни, разными средствами измерений и разными операторами в диапазоне температур от минус 37,5°С до +40,0°С. Средства измерений — ареометры АОН по ГОСТ 18481-81 [5] (пределы допускаемой основной погрешности ± 0.6 кг/м³). термометры стеклянные ртутные ТЛ-4 3 разряда, термометр сопротивления платиновый ПТСВ-3 по 3 разряду (доверительные границы абсолютной погрешности при доверительной вероятности 0,95 составляют значения в диапазоне от 0,05°C до 2°C) и измеритель температуры МИТ 2.05 (предел допускаемой основной погрешности ±0,02%). Воспроизводимость измерений составила значение ± 1,0 кг/м3. Результаты измерений показали, что плотность ингибитора имеет линейную зависимость от температуры (рис. 1). В исследуемом диапазоне температур размах изменения плотности составил значение 54,25 кг/м³ (табл. 1).

На практике ингибитор коррозии привозят из производства на дозаторную установку с паспортом, где указана плотность реагента только при температуре 20°С. Так, при температурах реагента плюс 40°С и минус 37,5°С отклонения плотности ингибитора коррозии от значения 948,0 кг/м³ при температуре 20°С составили

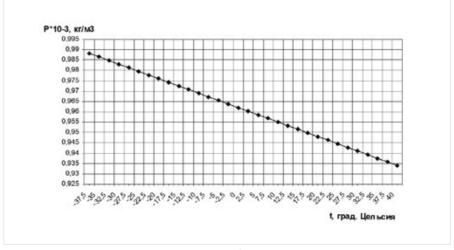


Рис. 1 — Зависимость плотности $oldsymbol{o}$ ингибитора коррозии от температуры $oldsymbol{t}$

значения 1,5% и 4,5% соответственно, которые пропорциональны отклонениям массы реагента также в 1,5% и 4,5% соответственно.

Погрешность измерения плотности ингибитора коррозии, рассчитанная с учетом погрешности ареометра и воспроизводимости измерений плотности реагента, составила значение \pm 1,2 кг/м³.

Погрешность определения высоты столба жидкости обусловлена в основном тремя составляющими: погрешностью измерительной линейки или рулетки (предела допускаемой погрешности), погрешностью отсчета по измерительной линейке или рулетке, вызванной волнением на поверхности жидкости при сливе жидкого реагента из резервуара, и погрешностью, вызванной линейным расширением нержавеющей стали линейки (рулетки) при изменении температуры окружающего воздуха.

При измерениях высоты столба жидкости с использованием линейки или рулетки при температурах, отличных от 20°С, возникает дополнительная погрешность пропорциональная температурному коэффициенту линейного расширения нержавеющей стали. Например, при измерении высоты уровня жидкости равной

ρ · 10 ⁻³ , κΓ/м ³	t, °C
0,98825	- 37,5
0,98650	- 35,0
0,98475	- 32,5
0,98300	- 30,0
0,98125	- 27,5
0,97950	- 25,0
0,97775	- 22,5
0,97600	- 20,0
0,97425	- 17,5
0,97250	- 15,0
0,97075	- 12,5
0,96900	- 10,0
0,96725	- 7,5
0,96550	- 5,0
0,96375	- 2,5
0,96200	0
0,96025	2,5
0,95850	5,0
0,95675	7,5
0,95500	10,0
0,95325	12,5
0,95150	15,0
0,94975	17,5
0,94800	20,0
0,94625	22,5
0,94450	25,0
0,94275	27,5
0,94100	30,0
0,93925	32,5
0,93750	35,0
0,93575	37,5

Таб. 1 — Зависимость плотности $oldsymbol{
ho}$ ингибитора коррозии от температуры $oldsymbol{t}$

1000 мм эта погрешность составляет \pm 0,2 мм на каждые 10°C. По этой причине, при эксплуатации линеек или рулеток из нержавеющей стали при измерениях при температурах, отличных от 20°C, необходимо вводить поправку на температурный коэффициент линейного расширении по формуле:

$$\Delta L = \alpha \cdot L \cdot (t - 20) \tag{2}$$

где α = 2,0 · 10 · 5 / °С. — коэффициент линейного расширения нержавеющей стали; L — длина по шкале линейки, измеренная при температуре t, мм; t — температура воздуха, °С.

Более надежным, производительным и точным методом является измерение расхода массы ингибитора коррозии в резервуаре с использованием преобразователя гидростатического давления Сапфир-22МП-ВН-ДГ (предел допускаемой основной погрешности 0,15% ВПИ, разрешение по давлению 0,01% ВПИ) [6]. В этом случае расход массы жидкости определяется косвенно по формуле:

$$\delta m = \frac{\delta P_{np.} \cdot S}{\sigma}$$
(3)

где $\delta P_{_{\it mp}}$ — приращение давления, измеряемое преобразователем, кгс/м²; S— площадь сечения резервуара, м² g— ускорение свободного падения, м/с² (g = 9,81 м/с²).

Достоинства этого метода:

- нет необходимости оператору знать плотность ингибитора коррозии;
- нет необходимости оператору измерять высоту столба жидкости и проводить расчеты по определению расхода массы сливаемой жидкости;
- нет необходимости подвергать периодической поверке линейку или рулетку;
- нет вклада в погрешность измерения расхода массы составляющей, обусловленной погрешностью определения плотности ингибитора коррозии;
- нет вклада в погрешность измерения расхода массы составляющей, обусловленной погрешностью определения высоты столба жидкости;
- погрешность измерения расхода массы реагента определяется разрешением по давлению, чувствительностью преобразователя давления Сапфир, а не пределом допускаемой погрешности прибора;
- преобразователь давления Сапфир-22МП-ВН-ДГ преобразует давление гидростатическое в унифицированный токовый сигнал и цифровой сигнал на базе интерфейса RS-485 по протоколу обмена MODBUS, а также осуществляет индикацию текущего выходного параметра и параметров настройки в системах автоматического контроля, регулирования и управления технологическими процессами;
- электронная измерительная схема преобразователя Сапфир позволяет программировать любую программу, поэтому в стационарных точках использования ингибитора коррозии введение в программу параметра S сечения резервуара дает возможность с помощью преобразователя Сапфир-22МП-ВН-ДГ, подключенного к резервуару дозаторной установки по схеме рис. 2, проводить прямое измерение расхода массы реагента.

Описываемый метод измерения расхода массы был предложен для проведения испытаний преобразователей давления Сапфир-22МП-ВН-ДГ в Альметьевском и Лениногорском НГДУ ОАО «Татнефть». Для этой цели нами была разработана «Программа и методика проведения эксплуатационных испытаний преобразователей гидростатического давления измерительного Сапфир-22МП-ВН-ДГ», которая согласована и утверждена в ОАО «Татнефть». Приборы установлены на резервуары дозаторных установок и проходят испытания.

Целью испытаний является определение отклонений результатов измерений расхода массы ингибитора коррозии преобразователем Сапфир от результатов измерений расхода массы, полученных путем взвешивания на весах, а также проверка надежности работы преобразователей.

Отклонение результата измерения расхода массы реагента преобразователем Сапфир от результата измерения расхода массы, полученного путем взвешивания на весах, определяется по формуле:

$$\Delta(\delta m) = \delta m_{nn} - \delta m_{eec}$$
 (4)

где δm_{np} — расход массы реагента, измеренный преобразователем Сапфир, кг; $\delta m_{\rm ecc}$ — расход массы реагента, измеренный на весах, кг.

Отклонения $\Delta(\delta m)$ не должны превышать предела допускаемого значения, определяемого по формуле:

$$\Delta(\delta m)_{don} = \sqrt{\Delta^2(\delta m_{np})} + \Delta^2(\delta m_{eec})$$
 (5)

где $\Delta(\delta m_{np})$ — предельная погрешность измерения расхода массы реагента преобразователем Сапфир, кг; $\Delta(\delta m_{esc})$ — предельная погрешность измерения расхода массы реагента весами (предел допускаемой основной погрешности весов), кг.

Предельная погрешность $\Delta(\delta m_{np})$ с учетом требований оценки погрешностей косвенных измерений по МИ 2083-90 [7] определяется по формуле:

$$\Delta(\delta m_{sp}) = \sqrt{\left(\frac{S}{g}\right)^2 \cdot \Delta^2(\delta P_{sp}) + \left(\frac{\delta P_{sp}}{g}\right)^2 \cdot \Delta^2 S} \quad (6)$$

где Δ (δ Pпр) — предельная погрешность измерения приращения давления, измеряемого преобразователем Сапфир, кгс /м²

 ΔS — предельная погрешность измерения площади сечения резервуара, M^2 .

Предварительные испытания по определению отклонений $\Delta(\delta m)$ результатов измерений расхода массы ингибитора коррозии преобразователем Сапфир от результатов измерений расхода массы, полученного путем взвешивания на весах, дали значения, не превышающие 10 г.

Итоги

Метод измерения расхода массы ингибитора коррозии с использованием преобразователя гидростатического давления Сапфир-22МП-ВН-ДГ с основной погрешностью 0,15% производительнее и точнее объемно-массового метода.

Выводы

Преобразователи гидростатического давления Сапфир-22МП-ВН-ДГ с основной погрешностью 0,15%, выпускаемые из производства ОАО «Теплоконтроль», могут быть

использованы нефтяными компаниями в качестве средств измерений расхода массы ингибитора коррозии.

Список используемой литературы

- ЦТ-781. Инструкция о порядке и методах измерений при учетных операциях с нефтепродуктами на предприятиях Федерального железнодорожного транспорта.
 Утвержден МПС РФ 15.09.2000 № ЦТ-781.
- Инструкция о порядке и методах измерений при учетных операциях с нефтепродуктами в подразделениях ОАО РЖД. Распоряжение ОАО РЖД от 18.09.2009 № 1949р.
- Методические указания по испытанию ингибиторов коррозии для газовой промышленности. Утвержден PAO «ГАЗПРОМ» и ВНИИГАЗ 30.09.1996.
- 4. ГОСТ 3900-85. Нефть и нефтепродукты. Методы определения плотности.
- 5. ГОСТ 18481-81. Ареометры и цилиндры стеклянные. Общие технические условия.
- 6. ТУ 4212-177-00225621-2008. Преобразователи давления измерительные Сапфир-22МП-ВН. Технические условия.
- МИ 2083-90 ГСИ. Измерения косвенные.
 Определение результатов измерений и оценивание их погрешностей.

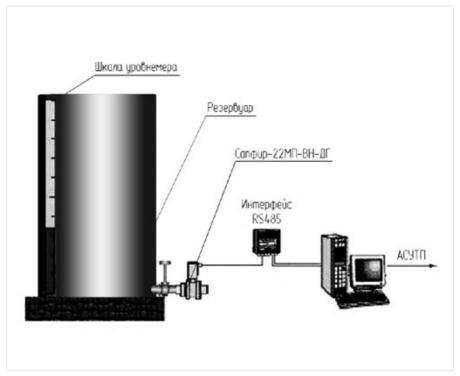


Рис. 2— Схема подключения преобразователя давления гидростатического Сапфир-22МП-ВН-ДГ к резервуару дозаторной установки

ENGLISH CORROSION

About application of the converter of hydrostatic pressure Sapphir-22MP-VN-DG for measurement of the expense of weight corrosion inhibitor

Authors:

Thomas T. Nigamatzyanov — chief metrologist¹; tomas-nigmat@mail.ru

Valery V. Askerko — assistant to the general director on quality1; omk_tk@mail.ru

Svetlana A. Anisimova — leading engineer of test laboratory¹

Anatoly N. Lyubyagin — assistant to the commercial director¹; anatol_tk@mail.ru

Rustem R. Salimullin — chief in department of information technologies2; salimullin@tatneft.ru

¹OJSC "Teplokontrol", Kazan, Russian Federation

²Engineering center OJSC "Tatneft", Almetyevsk, Russia Federation

Abstract

In article the advantage of definition of the expense of weight corrosion inhibitor, submitted from the tank of dose installation in the oil-field equipment, with use of the converter of hydrostatic pressure Sapphir-22MP-VN-DG is considered.

Materials and methods

The sample reagent selected from the batch plant Almetyevsky OGPD of OJSC "Tatneft". Body-mass

References

- 1. CT-781. Instruktsiya o poryadke i metodakh izmereniy pri uchetnykh operatsiyakh s nefteproduktami na predpriyatiyakh Federal'nogo zheleznodorozhnogo transporta [Procedure and measurement methods for accounting operations with oil companies on the Federal Railway Transport]. Approved MPS RF 15.09.2000 Nº CT-781.
- Instruktsiya o poryadke i metodakh
 izmereniy pri uchetnykh operatsiyakh s
 nefteproduktami v podrazdeleniyakh JSC
 RZhD [Procedure and measurement methods
 for accounting operations with oil products

method by CT-781, methods for the determination of density in accordance with GOST 3900-85.

Results

The method of measuring the mass flow of the corrosion inhibitor using a hydrostatic pressure transducer Sapphir-22MP-BH-DG with a basic accuracy of 0.15% more productive and more accurate body-mass method.

in departments of Railways]. Resolution of JSC Russia Railways from 18.09.2009 № 1949r.

- 3. Metodicheskie ukazaniya po ispytaniyu ingibitorov korrozii dlya gazovoy promyshlennosti [Guidelines for the testing of corrosion inhibitors for the gas industry]. Approved by RAO "Gazprom" and VNIIGAS 30.09.1996.
- 4. GOST 3900-85. Neft' i nefteprodukty. Metody opredeleniya plotnosti [Oil and oil products. Methods for determining the density].
- 5. GOST 18481-81. Areometry i tsilindry steklyannye. Obshchie tekhnicheskie

Conclusions

Hydrostatic pressure converter Sapphir-22MP-BH-DG with the intrinsic error of 0.15%, produced from the production of Teplokontrol, can be used by oil companies as a means of measuring the mass flow of the corrosion inhibitor.

UDC 620.193.4

Keywords

hydrostatic pressure converter, mass flow rate, corrosion inhibitor

- usloviya [Hydrometers and cylinders of glass. General specifications].
- 6. TU 4212-177-00225621-2008. Preobrazovateli davleniya izmeritel'nye Sapphir-22MP-VN. Tekhnicheskie usloviya [Pressure transducers measuring Sapphir-22MP-HV. Specifications].
- 7. MI 2083-90 GSI. Izmereniya kosvennye. Opredelenie rezul'tatov izmereniy i otsenivanie ikh pogreshnostey [Indirect measurement. Determination of the results of measurements and evaluation of their errors].