56 КОРРОЗИЯ УДК 620.193

Современное состояние химико-технологической защиты от коррозии установок первичной переработки нефти. Проблемы, пути совершенствования

Ф.М. Хуторянский

д.т.н., профессор1

А.Л. Цветков

к.х.н., директор химического департамента²

Ю.Ю. Кляцкий

начальник НИЛ³

¹ОАО «ВНИИ НП», Москва, Россия ²ООО «Колтек Экохим», Москва, Россия ³НИЛ ООО «Колтек Экохим», Москва, Россия

Мы рассматриваем комплексную химико-технологическую защиту от коррозии как самостоятельный технологический процесс, обеспечивающий безаварийную длительную эксплуатацию технологического оборудования.

Ключевые слова

нефтепереработка, коррозия, отложения, поглотители сероводорода, ингибитор коррозии, триазин, формальдегид Известно, что коррозия является исключительно вредным явлением при работе нефтеперерабатывающего завода и наиболее крупной причиной затрат на техобслуживание. Высокие температуры при фракционировании сырой нефти повышают вероятность коррозии. Следовательно, очень важно, чтобы вещества, вызывающие коррозию, выводились из системы или нейтрализовались, и чтобы все металлы, подверженные коррозии, защищались физически или химически.

С этой задачей в значительной мере успешно справляется комплекс мероприятий по химико-технологической защите от коррозии, включающий применение специальных реагентов (нейтрализаторов и ингибиторов коррозии).

Однако с конца 2012 года на ряде НПЗ (Киришский, Московский, Ярославский, Мозырский и др.) стали наблюдаться «нетипичные» случаи с коррозионной ситуацией и образованием больших количеств отложений в секциях аппаратов воздушного охлаждения и в рефлюксных емкостях. Причем, это наблюдалось независимо от применяемых «пакетов» реагентов различных производителей (рис. 1—3).

Образцы отложений были отобраны и проанализированы. Даже по внешнему виду отложения, отобранные из рефлюксных емкостей и с трубных решеток КВО, принципиально отличались друг от друга.

Отложения из рефлюксных емкостей (рис. 3) были светло-серого, почти белого или слегка кремового цвета, мелкодисперсные, глиноподобные, по консистенции похожие на строительную шпатлевку.

Отложения из коллектора, решеток и трубок КВО (рис. 1 и 2) были в виде твердых слоистых чешуйчатых отложений, которые имели цвет от темно-бурого до угольно-черного.

Проведенный анализ отложений (таб. 1) показал разницу по зольности и элементному составу этих двух типов отложений.

Из анализа результатов проведенных исследований были сделаны выводы, что отложения из рефлюксных емкостей представляют собой хорошо озоляемое вещество с низкой зольностью (10–20%), в состав которого, в основном, входит сера (до 50%), углерод (до 25%).

Отложения, отобранные с трубок и решеток секции КВО, имели высокую зольность (до 99%) и представляли, в основном смесь сульфидов и окислов металлов, входящих в состав конструкционных материалов коллектора, решеток и трубок аппаратов — меди, железа, цинка.

Дальнейший масс-спектрометрический и ИК-анализ показал, что основа этих отложений представлено соединением со связями С-С, С-S, С-H, S-S (рис. 4). Анализ показал, что в состав отложений входят различные серосодержащие соединения — полиметиленсульфид с различной степенью полимеризации, набор наиболее легких циклических и линейных сероорганических соединений и элементарной серы в видее циклооктасульфида, а также примесь остатков тяжелых алифатических, в меньшей степени, ароматических углеводородов линейного и разветвленного строения.

Таким образом, наличие значительных количеств серы в виде сульфидов металлов в

Мозырский НПЗ, отложения из трубок ВХО

СалаватНПЗ, отложения из XB, уст. ABT-4

Московский НПЗ, отложения из XB-2

Рис. 1 — Отложения на трубных решетках и в крышках воздушных холодильников

Рис. 2 — Отложения из аппаратов (конденсаторов) воздушного охлаждения (КВО)

отложениях с трубной решетки секций КВО и в виде серосоединений и элементарной серы в отложениях из рефлюксных емкостей, подводит к выводу, что данный фактор связан с образующимися соединениями серы. Серосодержащие соединения играют значимую роль в образовании различных отложений, наблюдаемых в зоне секции конденсаторов и рефлюксных емкостях, а также повышенного коррозионного разрушения металлов теплообменного оборудования.

Возможным источником соединений серы отлагающихся в рефлюксных емкостях являются продукты поглощения сероводорода различными поглотителями, применяемые с недавнего времени на ряде промыслов. Например, поглотители сероводорода широко

применяются на месторождениях Поволжья (Татарстан), Удмуртии, Южного Урала, Самарской области, Коми.

В последние годы основными поглотителями сероводорода, применяемыми на промыслах, являются поглотители на основе альдегидов (формалина, глиоксаля) и на основе аминов (триазинов). Однако, исходя из соображений стоимости, реально на практике в последние 2-3 года в большинстве случаев на промыслах применяют поглотители на основе формальдегида.

Так, например, на промыслах Коми, по нашим данным, в 2013 году было вовлечено в нефть около 6000 тонн альдегидсодержащих поглотителей сероводорода. А в целом их потребление превысило 15000 тонн.

Из многочисленных литературных источников следует, что формальдегид в условиях применения взаимодействует с сероводородом по довольно сложному пути, но конечным продуктом этого взаимодействия являются тиоспирты (I) (тиоформалин), которые при потере воды переходят в димеры (II) и далее в полисульфиды (III) (рис. 4).

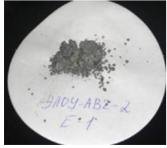
Таким образом, исходная сероводородная сера из нефти, в конечном итоге, никуда не исчезает, а остается в связанном виде в нефти в составе полисульфида.

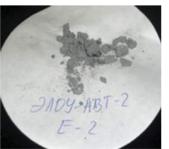
В случае большого содержания сероводорода в нефти, количество полисульфидов может быть значительным. В зависимости от длины цепи и молекулярного веса полисульфиды в нефти могут находиться как в растворенном

Из аппаратов воздушного охлаждения

зола	cepa	хлор	углер.	азот	железо	медь	цинк	
(%)								
99	7,35	-	-	-	31,8	50,9	7,41	
53	11,02	5,98	13,32	2,26	43,07	1,6	2,2	
97	5,88	2,86	-	-	5,57	31,2	7,55	
95	8,23	-	-	-	0,34	31,5	7,97	
	99 53 97	99 7,35 53 11,02 97 5,88	99 7,35 - 53 11,02 5,98 97 5,88 2,86	99 7,35 53 11,02 5,98 13,32 97 5,88 2,86 -	(%) 99 7,35 53 11,02 5,98 13,32 2,26 97 5,88 2,86	(%) 99	(%) 99 7,35 - - - 31,8 50,9 53 11,02 5,98 13,32 2,26 43,07 1,6 97 5,88 2,86 - - 5,57 31,2	

но рефликсивых синсостей											
	зола	cepa	хлор	углер.	азот	железо	медь	цинк			
	(%)	(%)									
КИНЕФ ЭЛОУ-АВТ-2	11,7	52	⟨0,1	19,6	1	3,8	4,01	0,74			
емкость Е-2											
ЯНОС, отложения из Е-4 колонна К-4, установка	14	35,03	⟨0,1	-	-	17,2	⟨0,1	< 0,1			
ЭЛОУ-АТ											
Московский НПЗ, отложения	17	55,9	-	23,7	1,04	0,88	3,43	2,77			
из емкости Е-14											


Таб. 1 — Зольность и основной элементный состав некоторых отложений



ОАО «ЯНОС», отложения слитые из дренажной емкости Е-1

«ЯНОС». отложения из Е-1

Московский НПЗ, отложения из Е-14

состоянии, так и в виде мелкодисперсной

Если учесть, что в исходной нефти содержание ${\rm H_2S}$ может достигать 3000 ppm (0,3%), то несмотря на разные стадии подготовки нефти (обессоливание, ЭЛОУ), значительное количество серосодержащих соединений могут достигать ректификационных колонн первичной переработки нефти на НПЗ.

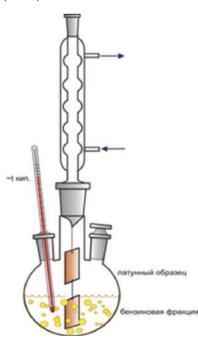
В условиях высоких температур

ректификации (360оС и выше) полисульфиды претерпевают термическую деструкцию.

По литературным данным, (рис. 4) продукты распада полиметиленсульфидов являются различные летучие соединения, которые способны свободно продвигаться по ректификационной колонне и далее накапливаться в погонах. Вследствие своей высокой реакционной способности данные соединения при конденсации легко могут опять полимеризоваться,

наращивая цепи. В литературе описаны различные реакции разложения полисульфидов: в том числе с образованием меркаптанов и других летучих сераорганических соединений, попадающих в конденсационно-холодильную систему атмосферных колонн и приводя к коррозии оборудования из латунных сплавов, что мы и наблюдаем в последние два года.

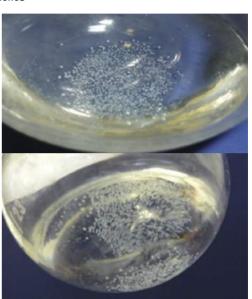
Предположение о термодеструкции продуктов взаимодействия сероводорода


Рис. 4 — Результаты хроматомасспектрометрического анализа отложений

Установка для проведения экспериментов по уносу возгоняемых компонентов, содержащихся в исследуемом веществе.

Кристаллизация отложений в холодильнике при кипении дизельного топлива с синтезированным ПМС.

Материал купона	Л63	Медь	Л63							
№ опыта	1	2	3	4	9	11	13	17	18	19
Фаза, где находится купон	ж	ж	ж	ж	ж	пар	пар	ж	пар	ж
Время, час	3	3	4	4	4	4	26,5	4	4	25,3
Петролейный эфир	+	+	+	+	+	+	+	+	+	+
Вода,%					5	5	5	5	5	5
Cepa, %	0,2		1		0,2	0,2	0,2		0,2	0,2
Полиметиленсульфид, %		0,25		1						
Отложения, %								0,2		
Скорость коррозии , (г/(м²×час)	0,762	0,826	0,418	0,557	1,438	0,635	0,092	0,865	1,082	5,694


Таб. 2 — Скорость коррозии латунных купонов

Вид холодильника после отгона фракции до 110°C

Отложения в отгоне фракции до 110°C.

Содержание $H_2S=3500$ ppm. Расход поглотителя – 7,5 кг/тонну нефти Этап I: отгон фракции до $t=110^{\circ}C$

Этап II: кипячение с обратным холодильником при 110°С в течение 16 часов

Рис. 6 — Лабораторные исследования обработанной поглотителем нефти месторождения «Ламбемор» (г. Усинск)

с поглотителями на основе альдегида (формальдегида), их возгонки, перегонке с парами углеводородных фракций, образовании отложений, взаимодействии с металлами, были нами исследованы в лабораторных экспериментах.

Полученные результаты экспериментов подтвердили, что при поглощении сероводорода в нефтях поглотителями на основе формальдегида образуется набор сераорганических соединений, которых нет в природной нефти. Данные соединения не удаляются при подготовке нефти на промысле и на ЭЛОУ НПЗ, попадая на первичную перегонку нефти, претерпевают термическую деструкцию, образуя активные летучие соединения серы, вступающие в реакцию с металлами оборудования (особенно из цветных сплавов на основе меди).

В таб. 2 приведены данные по скорости коррозии. Частично активные сероорганические соединения полимеризуются в полиметиленсульфид, который не растворим, ни в бензиновой фракции, ни в воде и образует отложения на поверхностях теплообменного оборудования и в рефлюксных емкостях.

Прямым подтверждением полученных результатов является лабораторный эксперимент

перегонки образца нефти из Усинска, содержащей 3500 ppm ${\rm H_2S}$ и обработанной на промысле формальдегидным поглотителем (7,5 кг на тонну). Было наглядно установлено образование отложений и на стенках холодильника и в отгоне.

Ситуация напоминает аналогичную с неконтролируемой закачкой в нефть в прошлом летучих хлорорганических соединений, в результате которой наблюдалась усиленная коррозия оборудования. На наш взгляд, прежде всего, необходимо ввести ограничение на применение альдегидсодержащих поглотителей сероводорода, поручить компетентным научным организациям провести глубокие исследования состава и вида сероорганических соединений по всей технологической цепочке: от поглощения сероводорода на месте добычи нефти до распределения соединений серы и их типам по технологическим потокам нефтепродуктов при первичной переработке нефти.

Итоги

При поглощении сероводорода в нефтях поглотителями на основе формальдегида образуется набор сераорганических соединений, которых нет в природной нефти. Данные

соединения не удаляются при подготовке нефти на промысле и на ЭЛОУ НПЗ, попадая на первичную перегонку нефти, претерпевают термическую деструкцию, образуя активные летучие соединения серы, вступающие в реакцию с металлами оборудования (особенно из цветных сплавов на основе меди).

Выводы

Необходимо ввести ограничение на применение альдегидсодержащих поглотителей сероводорода.

Группа Компаний Колтек ООО «КОЛТЕК ЭКОХИМ» 125371, Москва, Волоколамское ш., 97 Тел.: +7 (495) 276-25-35 Факс: +7 (495) 276-25-36 E-mail: ecochem@koltech.ru www.koltech.ru