Передовые технологии экономии ресурсов и энергосбережения посредством оборудования НПП «ЭКРА» для электроприводов промышленных агрегатов нефтегазового комплекса

С.А. Лазарев

к.т.н., заведующий кафедрой¹ ведущий специалист² lazarev-s@ekra.ru

¹САУЭП, Чувашский государственный университет. Чебоксары, Россия ²департамент технического маркетинга, НПП «ЭКРА», Чебоксары, Россия

Рассмотрены аспекты применения устройств плавного пуска и частотно-регулируемого электропривода для решения задач автоматизации технологического процесса ресурсосбережения и экономии электроэнергии.

Материалы и методы

Опыт внедрений. Обработка результатов экспериментальных исследований.

Ключевые слова

транспорт нефти, электрический привод, преобразователь частоты, автоматизированная система управления технологическим процессом. ресурсосбережение, экономия электроэнергии

Рациональное и эффективное использование ресурсов электротехнического и электромеханического оборудования — важнейшая задача, которая с особой остротой ставит задачу экономии ресурсов и энергосбережения.

Применение системы плавного пуска и преобразователя частоты в мощном высоковольтном электроприводе полностью решает проблему пуска электропривода, обеспечивает экономию ресурса электродвигателя и приводимого им механизма, устраняет негативное влияние процесса пуска на питающую электропривод сеть. Кроме того, применение частотно регулируемого электропривода обеспечивает автоматическое регулирование скорости вращения электродвигателя в функции технологического параметра, что не только улучшает качество выпускаемого продукта, но и способствует разработке и внедрению в производство новых инновационных технологий.

Однако эффективное применение таких систем электропривода немыслимо без комплексного решения задачи построения АСУ ТП объекта, обеспечивающей каскадный запуск нескольких насосных агрегатов от одного преобразователя с последующим переходом к питанию от сети.

Так, например, применение АСУ ТП в технологии транспорта нефти позволяет [1]:

- автоматизировать процесс пуска насосных агрегатов и регулирования технологического параметра (производительности насосного агрегата либо напора жидкости в трубопроводе);
- снизить расхода ресурсов на 2-3% за счёт стабилизации давления в трубопроводе и уменьшить утечки;
- уменьшить износ электротехнического и гидромеханического оборудования;

• снизить вероятности возникновения аварий, вызванных гидроударами. благодаря плавному изменению режимов работы насосных агрегатов.

Для автоматизации процесса регулирования технологического параметра АСУ ТП включает регулятор и датчик технологического параметра в рассматриваемом случае давления в магистрали (напора) или производительности. Существует два варианта построения таких систем регулирования. В первом случае насосный агрегат работает с постоянной скоростью, а регулирование производительности осуществляется путем дросселирования магистрали с помощью задвижки. Во втором случае задвижка, установленная между насосом и магистралью, полностью открыта, и регулирование ведется управлением скоростью вращения рабочего колеса насоса путем применения регулируемого электропривода насосного агрегата.

$$P_{\rm C} = P_{\rm TP} + \Delta P = P_{\rm TP} + \Delta P_{\rm 3} + \Delta P_{\rm HAC} + \Delta P_{\rm 2B}$$
 (1)

При регулировании производительности насосного агрегата с помощью задвижки (рис. 1а) потребляемая из электрической сети мощность $P_{\scriptscriptstyle C}$ (1) определяется суммой мощности затрачиваемой по требованиям технологического процесса на транспортировку жидкости (2) и мощности потерь ΔP .

$$P_{\text{\tiny TP}} = 9.81 H_2 Q \gamma, \tag{2}$$

где P_{TP} — мощность на валу насоса кВт;

 H_2 — напор по характеристике насоса м;

Q — расход по требованиям технологического про-

 γ — удельный вес жидкости кг/м³.

Мощность потерь в свою очередь складывается из потерь мощности на задвижке (3), потерь в насосе (4) и потерь в приводящем насос электродвигателе $\varDelta P_{_{\Pi \mathrm{B}}}.$

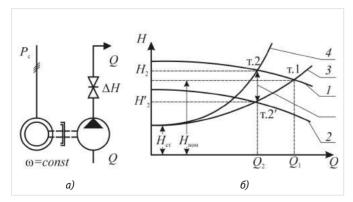


Рис. 1 — Регулирование производительности насосного агрегата с помощью задвижки: а) Функциональная схема; б) Характеристики насоса и магистрали

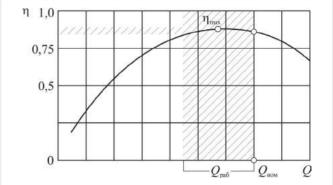


Рис. 2 — Зависимость КПД насоса от его производительности

Потери мощности в задвижке (3) зависят от требуемого по технологическому процессу расхода:

$$\Delta P_{_{3}} = 9.81 \Delta H_{_{3}} Q \gamma , \qquad (3)$$

где $\Delta H_{_3}$ — падение напора на задвижке, м.

Таким образом, потери мощности в задвижке прямо пропорциональны падению в ней напора. При регулировании производительности насосного агрегата с помощь задвижки изменяется характеристика магистрали 4 (рис. 16), а рабочая точка агрегата перемещается по характеристике насоса 1 из т.1 в т.2.

Мощность потерь в насосе (4) зависит от КПД насоса, определяемого его режимом работы:

$$\Delta P_{\text{\tiny HBC}} = 9.81 \Delta H_{\text{\tiny HBC}} Q \gamma \left(\frac{1 - \eta_{\text{\tiny HBC}}}{\eta_{\text{\tiny HBC}}} \right), \quad (4)$$

где $\varDelta H_{\rm {\it HAC}}-$ изменение напора в насосе, м; $\eta_{\rm {\it HAC}}-$ КПД насоса.

Зависимость КПД насоса от его производительности характеризуется рабочей зоной $Q_{\rm pa\delta}$ (на рис. 2 заштрихована) в которой КПД незначительно отличается от максимального значения птах и регулирование производительности насоса путем дросселирования магистрали экономически обосновано.

Если по условиям технологии требуется более глубокое регулирование производительности насосного агрегата, то применяется регулирование производительности насоса путем использования регулируемого электропривода. Наиболее эффективно и технически целесообразно в этом случае применить частотно регулируемый электропривод с асинхронным или синхронным электродвигателем (рис. 3).

Характеристика насоса [2] 2 (рис. 16) соответствует такому способу управления насосным агрегатом. Пусть в этом случае насос работает при полностью открытой задвижке с производительностью Q_2 и напором H'_2 что соответствует точке т.2' тогда для создания такого же напора в первом случае необходимо дросселировать магистраль (характеристика 4) и потери напора и мощности в задвижке составят ΔH и ΔP_3 , соответственно.

Для реализации управления приводным электродвигателем 1 (рис. 3a), регулирующим скорость вращения рабочего колеса насоса 2, при полностью открытой задвижке 3 используется преобразователь частоты 4.

Таким образом, с помощью регулирования скорости вращения рабочего колеса насоса, можно обеспечить требуемый напор в магистрали при заданной

производительности насосного агрегата (рис. 36). Важно отметить, что при таком регулировании КПД насоса изменяется незначительно и остается близким к максимальному значению (рис. 4) в широком диапазоне изменения производительности насосного агрегата.

Опыт показывает, что применение частотно-регулируемого электропривода насосного агрегата, работающего в широком диапазоне регулирования производительности, позволяет экономить до 30–40% электроэнергии, потребляемой агрегатом.

Преобразователи частоты серии ЭСН. выпускаемые НПП «ЭКРА», разработаны с учетом специфики эксплуатации в нашей стране. Преобразователи являются идеальным решением для управления скоростью вращения асинхронных и синхронных электродвигателей насосных агрегатов с напряжением до 10 кВ и мощностью от 250 кВт до 6,3 МВт. Преобразователи построены по многоуровневой топологии, принятой большинством зарубежных производителей подобной продукции. Преобразователь ЭСН содержит технологический регулятор производительности насосного агрегата (давления в магистрали) и легко интегрируется в АСУ ТП. Применение такого электропривода и АСУ ТП на его основе позволяет экономить электроэнергию, улучшать технологические процессы, а высокий КПД преобразователя во всем диапазоне скоростей и отсутствие отрицательного влияния гармоник на сеть и двигатель позволяют успешно решить эту задачу.

Преимущества преобразователей серии ЭСН и электроприводов на их основе:

- Практически чистая синусоида напряжения на выходе преобразователя позволяет:
- не использовать выходной фильтр;
- не иметь ограничений по длине кабеля (до 25 км):
- полностью использовать электродвигатель на 100% его мощности;
- работать с серийными асинхронными и синхронными двигателями любого исполнения.
- Коэффициент мощности, близкий к единице, позволяет не использовать устройства компенсации реактивной мощности и снижает потери в питающей линии электропередачи.
- Высокий КПД (не менее 97%).
- Входной согласующий трансформатор

- с медными обмотками в комплекте поставки обеспечивает гальваническую развязку с питающей сетью.
- Встроенная функция синхронного байпаса обеспечит каскадный пуск электродвигателей для многодвигательных приложений.
- Функция подхвата вращающегося электродвигателя при кратковременных провалах напряжения.
- Применение динамического торможения для останова электропривода с большим моментом инерции (опционально).
- Микропроцессорная система контроля и управления обеспечивает надежную и безопасную работу преобразователя и электропривода, осуществляя мониторинг режима сети, питающий преобразователь, режима работы преобразователя и электропривода с записью состояний в электронный журнал. Кроме того, такая система обеспечивает конфигурирование, диагностику и управление от сенсорной панели или АРМ оператора.
- Наличие функций автоматической настройки и диагностики электропривода сокращает время запуска и обеспечивает надежную эксплуатацию.
- Широкий набор защит обеспечивает максимальную защиту и увеличивает ресурс работы приводного электродвигателя.
- Повышенную надежность работы обеспечивают биполярные транзисторы с изолированным затвором — IGBT и установленные в звене постоянного тока плёночные конденсаторы, рассчитанные на большой срок службы.

Если по условиям энергосбережения при применении частотно регулируемого электропривода ЭСН насосный агрегат работает в режиме, когда потери при использовании дроссельного регулирования с помощью задвижки не превышают потери в преобразователе, то электродвигатель может быть переведен на питание от сети. Для реализации такого перехода в преобразователе ЭСН реализована специальная функция синхронизации с питающей электропривод электрической сетью и последующего переключения двигателя на питание от сети. Аналогичная задача возникает при управлении несколькими насосными агрегатами от одного преобразователя частоты, когда с помощью одного преобразователя осуществляется каскадный пуск насосных агрегатов.

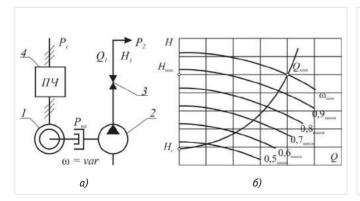


Рис. 3— Регулирование производительности насосного агрегата путем применения частотно регулируемого электропривода насоса: а) Функциональная схема; б) Регулировочные характеристики

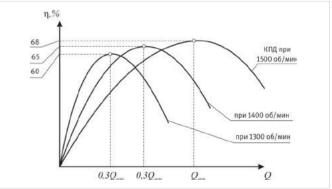


Рис. 4— Зависимости КПД насоса от его производительности при различных скоростях вращения рабочего колеса

Кроме того, при таком управлении один из насосных агрегатов может оставаться в режиме регулирования технологического параметра.

Опыт внедрения и эксплуатации преобразователей частоты ЭСН в составе АСУ ТП и проведенные испытания полностью подтвердили правильность выбора и реализации эффективных технических решений. Особенно многоуровневую топологию построения высоковольтного инвертора позволяющую получить хорошую совместимость преобразователя с питающей его сетью с одной стороны и с электродвигателем с другой стороны. Так, например, для электропривода мошностью 2.5 МВт с напряжением 10кВ и номинальной нагрузке уровень содержания высших гармоник в кривых напряжения на входе преобразователя составил 0,9% и входного тока — 3,5% при КПД преобразователя 97,2% [1].

Если по технологическим условиям работы насосного агрегата не требуется стабилизация давления в трубопроводе (производительности агрегата), либо производительность насосного агрегата регулируется задвижкой в небольших пределах $Q_{\rm PAL}$ (рис. 2), обеспечивающих высокий КПД насоса, то наиболее целесообразно пуск электродвигателя насосного агрегата осуществить от устройства плавного пуска, а автоматическое регулирование производительности реализовать с помощью управления задвижкой.

Применительно к высоковольтному электроприводу НПП «ЭКРА» выпускает устройства плавного пуска на напряжения 6 и 10 кВ для мощности электродвигателей от 315 кВт до 17,5 МВт двух типов:

• ШПТУ-Д и ШПТУ-Т — тиристорные преобразователи, выполненные по

схеме регулятора напряжения с фазовым принципом управления;

• ШПТУ-ВИ- преобразователя частоты с управляемым выпрямителем и зависимым инвертором тока.

Устройства плавного пуска серии ШПТУ-Д и ШПТУ-Т обеспечивают возможность регулирования величины и скорости нарастания пускового тока, позволяют осуществлять пуск электродвигателей и трансформаторов от источников ограниченной мощности. Благодаря этому обеспечивается надежная работа агрегатов, продлеваются сроки эксплуатации оборудования, снимаются ограничения на число пусков двигателя.

Режим работы ШПТУ-Д — повторно-кратковременный с временем работы 90±5 с при трёхкратной величине пусковых токов от номинального значения ШПТУ-Д с последующей паузой не менее 10 мин (3 пуска подряд с временем пуска до 30 с). При меньшей величине пусковых токов время работы ШПТУ-Д увеличивается на величину кратности 3*Iн / Іпуск.

Устройства ШПТУ-ВИ позволяют осуществлять частотный пуск электродвигателей с пусковым током, не превышающим номинальный ток синхронного двигателя для механизмов с «вентиляторной» нагрузкой и не более 1,2 от номинального значения для механизмов с большим статическим моментом.

Многочисленные внедрения устройств плавного пуска серий ШПТУ показали высокую технико-экономическую эффективность для электроприводов насосных агрегатов, не требующих большого диапазона регулирования. То есть там, где регулирование производительности насосного агрегата с помощью задвижки лежит в рабочем диапазоне обеспечивающим высокий КПД насоса.

Все перечисленные изделия сертифицированы и успешно эксплуатируются на предприятиях нефтегазового комплекса России и ближнего зарубежья и в системе АК «Транснефть».

Итоги

Внедрены системы плавного пуска и частотно-регулируемого электропривода с асинхронными и синхронными двигателями в составе автоматизированных систем управления технологического оборудования ОАО АК «Транснефть».

Выводы

При построении автоматизированных систем управления технологическим процессом насосных агрегатов технически и экономически целесообразно:

- 1. Для небольшого диапазона регулирования производительности агрегата использовать устройство плавного пуска электродвигателя и регулирование производительности с помощью дросселирования магистрали задвижкой.
- 2. Для больших диапазонов регулирования производительности насосного агрегата применение частотно-регулируемого электропривода насосного агрегата.

Список используемой литературы

- Лазарев С.А. Комплексная автоматизация электроприводов промышленных агрегатов нефтегазового комплекса // Экспозиция Нефть Газ. 2014. №3 (35). С. 17–20.
- 2. Лезнов Б.С. Энергосбережение и регулируемый привод в насосных и воздуходувных установках. М.: Энергоатомиздат, 2006. 360 с.

ENGLISH AUTOMATION

Advanced technology of resource and energy saving through "EKRA" Ltd equipment for electric drives of oil and gas sectors industrial units

UDC 621.6-5:621.314.2

Author

Sergey A. Lazarev — Ph.D., head of department¹, leading expert²; <u>lazarev-s@ekra.ru</u>

¹Chuvash State University, Cheboksary, Russian Federation

²Technical Marketing Department, "EKRA" Ltd, Cheboksary, Russian Federation

Abstract

We have reviewed various aspects of using soft starters and the variable frequency drive to automatize resource and energy saving industrial processes.

Materials and methods

Implementation experience. Experimental studies results processing.

Results

Soft starter and variable frequency drive

systems with asynchronous and synchronous motors have been introduced as part of the automated control systems of JSC "Transneft" technological equipment.

Conclusions

While constructing automated process control systems for pump units it is feasible and functional to:

Use a drive soft starter and control performance by throttling the pipe with a gate valve in case the performance

- adjustment range is small.
- Use variable frequency drive of the pump unit in case the performance adjustment range of the pump unit is broad.

Keywords

oil transportation, electric drive, frequency converter, automated process control system, resource saving, energy saving

References

- Lazarev S.A. Kompleksnaya avtomatizatsiya elektroprivodov promyshlennykh agregatov neftegazovogo kompleksa [Advanced technology to conserve resources and
- energy efficiency for complex automation of electric industrial machinery oil and gas industry] Exposition Oil Gas. 2014, issue 3 (35), pp. 17–20
- 2. Leznov B.S. Energosberezhenie i

reguliruemyy privod v nasosnykh i vozdukhoduvnykh ustanovkakh [Energy saving and controlled drive in pump units and blowing plants]. Moscow: Energoatomizdat, 2006, 360 p.